Assessing the Woonasquatucket River Watershed Water Quality: A Comprehensive Exploratory Analysis

Quinn Chamblin, Katy Cummings, Jeniah Franco, Nina Hernandez

About us!

Quinn: Statistics & Data Science and Biology double major, post-Smith moving back to California to apply to Biostatistics or Data Analytics fields!

Katy: Statistics & Data Science and Psychology double major, accepted an offering with Teach for America, so post-graduation I am moving to Philly!

Jeniah: Statistics and & Data Science, Spanish minor,

post-grad moving to Boston!

Nina: Statistics & Data Science and Bio-Chem double major, post-Smith attending post-bacc program at Brown University in Biotech!

SDS Capstone 410

The Goal of the Capstone:

Leverage students' previous coursework to address a real-world data analysis problem What does it entail?

INTERSTATE

410

- Students collaborate in teams on projects sponsored by industry, government, or academia.
- Students are required to use skills obtained from previous coursework such as ethics, project management, collaborative software development and consulting.

Introduction

- WRWC has accumulated data from over 30 years that has not been efficiently assessed and organized
- No way to produce quality analysis with previous set up
- Lead to undiscovered discrepancies in data and overall lack of understanding
- Previous approaches have focused on incremental data collection with limited analysis, due to limited resources

Research Question/Purpose

- Overall, we want to close the gaps between the potential the data has and WRWC's understanding of their data by:
 - Attaining a holistic understanding of the watershed's health
 - Identifying specific problem areas effectively
 - **Addressing** challenges in engaging the community due to the absence of accessible and engaging data representations.

Methodology Overview

- Data Collection: Description of the 28 sampling sites along the watershed.
 Analytical Tools Used: R programming, with packages like ggplot2, dplyr, and tidyverse.
- Data Preprocessing: Steps included data cleaning, filtering for specific parameters, and handling of missing values.
- Statistical Analysis: Use of linear regression models to understand trends.
 Exploratory Data Analysis: Employed to identify patterns, trends, and outliers in the data.

28 Location sites 7 Parameters

Millburg	VILLAN.	. HA AND AND AND AND AND AND AND AND AND AN	12
Kal	Feature ID	12	3.7=
147	1 WW_StaNumb	126	17
	2 WW_Station	WW126	Millis
Sutton	3 WBID	RI0002007R-15	Pa
- Soliton	4 WB_Type	Stream or river	y
12S	5 Site_DESCR	Slack's Tributary 4 (D - Southeast cove - 17" concrete pipe discharge)	19
King Hill	6 PARKING_ACCESS	NA	A
17-	7 Town	Johnston	15
17-1	8 BorderTown	Smithfield, Johnston	X.
Lota	9 COUNTY	PROVIDENCE	1.
A.	10 State	RI	1.5
and	11 LAT_DD	41.85558	XU
1	12 LON_DD	-71.54962	is file
A	13 ProjID	12	0
1	14 Year_added	NA	25-
m	15 Active	2012	22
0 5	16 Status	Not Active	X
110	17 DepthCode	S	121
46	18 MaxDepth_m	NA	NE
215	19 PublicAcce	Yes	3h
41	20 LakeAcreag	NA	240
and the	21 sqmeter	NA	E
and a	22 HUC_8	1090004	DAL
2 al	23 HUC_10	109000405	KAM
-0	24 HUC_12	10900040502	12
E	25 HUC_10_NAME	Woonasquatucket River-Moshassuck River	20
R	26 HUC_12_NAME	Woonasquatucket River	A
and the second	27 Image	NA	BA
Durfee Hi	28 elevation_Feet	273.6	Ce
N 23	29 elevation_meters	83.4	¥ 1
1 1	30 Ord_ld	SRA	亡へ

Interactive Map of Sites

Upstream / Downstream (part 1)

Table: Watershed Locations in Descending Order by Site Latitude (1-7)

Table: Watershed Locations in Descending Order by Site Latitude (8-14)

Site Location Number	Site Location Number
:	:
52	153
65	679
113	24
114	518
680	239
144	240
16	635

Table 1 & 2: Site Locations in Descending order (first-fourteen)

Upstream / Downstream (part 2)

Table: Watershed Locations in Descending Order by Site Latitude (15-21)

Table: Watershed Locations in Descending Order by Site Latitude (22-28)

Site Location Number	Site Loca	tion Number
:		:
238		46
61		124
241		125
123	1	126
437		508
226	1	308
201	1	227

Table 3 & 4: Site Locations in Descending order (Fifteen-Twenty-Eight)

Parameters of Interest

- Chloride impacts on aquatic life
- Phosphorus eutrophication risk
- Dissolved Oxygen health of aquatic organisms
- Fecal Coliform indicator of water quality and contamination
- Nitrogen nutrient loading and algal blooms
 - Enterococci beach closures and human health risks
 - Temperature affects dissolved
 oxygen levels and species composition

Summary Statistics of the Seven Parameters

*	Mean 🍦	Median 🍦	Standard_deviation $$	Sample_size 🗦
Chloride (mg/l)	43.4674419	39.500	29.2530227	860
Dissolved Oxygen (mg/l)	6.8215494	7.300	2.5855086	1791
Enterococci (MPN/100)	506.2722160	30.600	2006.6218433	898
Fecal Coliform (CFU/100ml)	1227.8516129	72.000	5238.2804001	403
Nitrogen (mg/l)	0.6748992	0.535	0.4882856	1532
Phosphorus (ug/l)	25.3616822	16.000	48.6313124	1605
Temperature (C)	21.4370765	22.000	4.5889805	4965

* 2,698 Enterococci (MPN/100) *18,853 Fecal Coliform (CFU/100ml)

Exploratory Findings - Bar plots of mean concentration per year

Figure 1. Bar plot distribution of mean parameter concentration for 7 parameters from 1990 to 2021

Exploratory Findings - Bar plots of mean concentration per site

Figure 2. Bar plot distribution of mean parameter concentration for 7 parameters per site

Exploratory Findings - Bar plots of mean concentration per decade

Figure 2. Bar plot distribution of mean parameter concentration for 7 parameters per decade

Kruskal-Wallis Test by Year

Table: Statistical Significance Table for Parameters by Year

Parameter	P_value Significance
:	: :
Chloride	0.000 Significant
Dissolved Oxygen	0.000 Significant
Enterococci	0.003 Significant
Fecal Coliform	0.000 Significant
Nitrogen	0.000 Significant
Phosphorus	0.000 Significant
Temperature	0.000 Significant

p-value less than or equal to 0.05 (by alpha number) is considered to be statistically significant

Kruskal-Wallis Test by Site

Table: Statistical Significance Table for Parameters by Site

Parameter	P_value Significance
:	:
Chloride	0 Significant
Dissolved Oxygen	0 Significant
Enterococci	0 Significant
Fecal Coliform	0 Significant
Nitrogen	0 Significant
Phosphorus	0 Significant
Temperature	0 Significant

p-value less than or equal to 0.05 (by alpha number) is considered to be statistically significant

Exploratory Findings

Figure 2. Linear relationships between Mean Concentration of Parameters by Year **relationships between mean concentration and site do not have enough data to show a line of best fit

Exploratory Findings

Changes in Site 308 over Time

Changes in Site 227* Over Time

*This is the most downstream site

Changes in Site 437 over Time

Changes in Site 635 Over Time

(I/bn)

Nitrogen

No data for Fecal Coliform at this site

Implications of Findings

- Reveals significant correlations between the year and changes in water quality parameters such as chloride and fecal coliform
- The high R² values for chloride and fecal coliform suggest these parameters are more predictable over time, which is crucial for managing public health risks associated with water quality.

Implications cont.

- Lower R² values for parameters like dissolved oxygen and phosphorus highlight the complexity of ecological dynamics in the watershed, suggesting that current management strategies may need reevaluation to effectively address these variables.
- The shift in EPA standards for measuring fecal contamination highlights the need for updated and consistent methods in monitoring water quality to align with the latest public health guidelines.

Recommendations

- Explore non-linear models such as logistic or exponential regressions to better fit the relationships between the year and water quality parameters.
- Investigate the effects of different sites within the watershed to understand spatial variations in water quality.
- Transition to testing parameters like E. coli as recommended by EPA to ensure that future water quality assessments align with current public health standards.
- Standardize and improve data collection methods to reduce inconsistencies and improve the reliability of future studies. Training on ethical and organized data collection is essential.
- Expand the scope of research to include environmental factors such as climate change, human activity, and land use changes, which likely impact water quality.

Conclusion

- Our research has laid a foundational framework by establishing a comprehensive dataset that highlights key correlations and trends in the Woonasquatucket River Watershed water quality over the years.
- We urge environmental scientists and policymakers to utilize our findings as a basis for further detailed studies. Advanced analytical techniques are necessary to uncover deeper insights and effectively guide environmental policy.
- By advancing our understanding of the watershed's dynamics and improving monitoring practices, we can better manage and preserve water quality, ensuring the health and safety of the community and the environment.

Acknowledgements

Alicia Leher WRWC, Executive Director

Shiya Cao My My Tran

Thanks!

Do you have any questions? Email us!

alehrer@wrwc.org qchamblin@smith.edu kcummings@smith.edu ifranco@smith.edu nhernandez@smith.edu **CREDITS:** This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>